6,095 research outputs found

    The rotational shear layer inside the early red-giant star KIC 4448777

    Get PDF
    We present the asteroseismic study of the early red-giant star KIC 4448777, complementing and integrating a previous work (Di Mauro et al. 2016), aimed at characterizing the dynamics of its interior by analyzing the overall set of data collected by the {\it Kepler} satellite during the four years of its first nominal mission. We adopted the Bayesian inference code DIAMOND (Corsaro \& De Ridder 2014) for the peak bagging analysis and asteroseismic splitting inversion methods to derive the internal rotational profile of the star. The detection of new splittings of mixed modes, more concentrated in the very inner part of the helium core, allowed us to reconstruct the angular velocity profile deeper into the interior of the star and to disentangle the details better than in Paper I: the helium core rotates almost rigidly about 6 times faster than the convective envelope, while part of the hydrogen shell seems to rotate at a constant velocity about 1.15 times lower than the He core. In particular, we studied the internal shear layer between the fast-rotating radiative interior and the slow convective zone and we found that it lies partially inside the hydrogen shell above r≃0.05Rr \simeq 0.05R and extends across the core-envelope boundary. Finally, we theoretically explored the possibility for the future to sound the convective envelope in the red-giant stars and we concluded that the inversion of a set of splittings with only low-harmonic degree l≀3l\leq 3, even supposing a very large number of modes, will not allow to resolve the rotational profile of this region in detail.Comment: accepted for publication on Ap

    The Gradients in the 47 Tuc Red Giant Branch Bump and Horizontal Branch are Consistent With a Centrally-Concentrated, Helium-Enriched Second Stellar Generation

    Full text link
    We combine ground and space-based photometry of the Galactic globular cluster 47 Tuc to measure four independent lines of evidence for a helium gradient in the cluster, whereby stars in the cluster outskirts would have a lower initial helium abundance than stars in and near the cluster core. First and second, we show that the red giant branch bump (RGBB) stars exhibit gradients in their number counts and brightness. With increased separation from the cluster center, they become more numerous relative to the other red giant (RG) stars. They also become fainter. For our third and fourth lines of evidence, we show that the horizontal branch (HB) of the cluster becomes both fainter and redder for sightlines farther from the cluster center. These four results are respectively detected at the 2.3σ\sigma, 3.6σ\sigma, 7.7σ\sigma and 4.1σ\sigma levels. Each of these independent lines of evidence is found to be significant in the cluster-outskirts; closer in, the data are more compatible with uniform mixing. Our radial profile is qualitatively consistent with but quantitatively tighter than previous results based on CN absorption. These observations are qualitatively consistent with a scenario wherein a second generation of stars with modestly enhanced helium and CNO abundance formed deep within the gravitational potential of a cluster of previous generation stars having more canonical abundances.Comment: 20 pages, 6 figures, 1 table, submitted to The Astrophysical Journa

    Loading of Polydimethylsiloxane with a Human ApoB-Derived Antimicrobial Peptide to Prevent Bacterial Infections

    Get PDF
    Background: medical device-induced infections affect millions of lives worldwide and innovative preventive strategies are urgently required. Antimicrobial peptides (AMPs) appear as ideal candidates to efficiently functionalize medical devices surfaces and prevent bacterial infections. In this scenario, here, we produced antimicrobial polydimethylsiloxane (PDMS) by loading this polymer with an antimicrobial peptide identified in human apolipoprotein B, r(P)ApoBLPro. Methods: once obtained loaded PDMS, its structure, anti-infective properties, ability to release the peptide, stability, and biocompatibility were evaluated by FTIR spectroscopy, water contact angle measurements, broth microdilution method, time-killing kinetic assays, quartz crystal microbalance analyses, MTT assays, and scanning electron microscopy analyses. Results: PDMS was loaded with r(P)ApoBLPro peptide which was found to be present not only in the bulk matrix of the polymer but also on its surface. ApoB-derived peptide was found to retain its antimicrobial properties once loaded into PDMS and the antimicrobial material was found to be stable upon storage at 4◩ C for a prolonged time interval. A gradual and significant release (70% of the total amount) of the peptide from PDMS was also demonstrated upon 400 min incubation and the antimicrobial material was found to be endowed with anti-adhesive properties and with the ability to prevent biofilm attachment. Furthermore, PDMS loaded with r(P)ApoBLPro peptide was found not to affect the viability of eukaryotic cells. Conclusions: an easy procedure to functionalize PDMS with r(P)ApoBLPro peptide has been here developed and the obtained functionalized material has been found to be stable, antimicrobial, and biocompatible

    Internal rotation of red giants by asteroseismology

    Get PDF
    We present an asteroseismic approach to study the dynamics of the stellar interior in red-giant stars by asteroseismic inversion of the splittings induced by the stellar rotation on the oscillation frequencies. We show preliminary results obtained for the red giant KIC4448777 observed by the space mission Kepler.Comment: 3 pages, 4 figures, the 40th Liege International Astrophysical Colloquium Liac40, 'Ageing low mass stars: from red giants to white dwarfs', to be published on EPJ Web of Conference

    The gamma-ray burst monitor for Lobster-ISS

    Get PDF
    Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2x10^{-12} erg cm^{-2}s$^{-1}, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4--6 arcmin. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize GRBs which occur in the Lobster FOV (162x22.5 degrees) and to significantly extend the scientific capabilities of the main instrument for the study of GRBs and X-ray transients. The combination of the two instruments will allow an unprecedented spectral coverage (from 0.1 up to 300/700 keV) for a sensitive study of the GRB prompt emission in the passband where GRBs and X-Ray Flashes emit most of their energy. The low-energy spectral band (0.1-10 keV) is of key importance for the study of the GRB environment and the search of transient absorption and emission features from GRBs, both goals being crucial for unveiling the GRB phenomenon. The entire energy band of Lobster-ISS is not covered by either the Swift satellite or other GRB missions foreseen in the next decade.Comment: 6 pages, 4 figures. Paper presented at the COSPAR 2004 General Assembly (Paris), accepted for publication in Advances in Space Research in June 2005 and available on-line at the Journal site (http://www.sciencedirect.com/science/journal/02731177), section "Articles in press

    Internal rotation of the red-giant star KIC 4448777 by means of asteroseismic inversion

    Get PDF
    In this paper we study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from {\it Kepler} observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure which involves a combination of different methods to extract the rotational splittings from the power spectrum. We find not only that the core rotates faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al. 2012,2014), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of Δr=0.001R\Delta r=0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The results show that the entire core rotates rigidly with an angular velocity of about ⟚Ωc/2π⟩=748±18\langle\Omega_c/2\pi\rangle=748\pm18~nHz and provide evidence for an angular velocity decrease through a region between the helium core and part of the hydrogen burning shell; however we do not succeed to characterize the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core and through the hydrogen burning shell, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of ⟚Ωs/2π⟩=68±22\langle\Omega_s/2\pi\rangle=68\pm22~nHz. Hence, the core in KIC~4448777 is rotating from a minimum of 8 to a maximum of 17 times faster than the envelope. We conclude that a set of data which includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.Comment: accepted for publication on Ap

    Multifunctional Core@Satellite Magnetic Particles for Magnetoresistive Biosensors

    Get PDF
    Magnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors. The isolated AuNPs (satellites) were stuck onto an aggregate of individual iron oxide crystals (core) so that the resulting core@satellite magnetic particles (CSMPs) could be functionalized by the photochemical immobilization technique an easy procedure that leads to oriented antibodies immobilized upright onto gold. The morphological, optical, hydrodynamic, magnetic, and surface charge properties of CSMPs were compared with those exhibited by the commercial MNP clusters showing that the proposed coating procedure endows the MNP clusters with stability and ductility without being detrimental to magnetic properties. Eventually, the high-performance MR biosensor allowed us to detect human IgG in water with a detection limit of 13 pM (2 ng mL-1). Given its portability, the biosensor described in this paper lends itself to a point-of-care device; moreover, the features of the MR biochip also make it suitable for multiplexed analysis

    Development and first tests of GEM-like detectors with resistive electrodes

    Get PDF
    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers or completely made of resistive materials. These detectors can operate stably at gains close to 105. The resistive layers limit the energy of discharges appearing at higher gains thus making the detectors very robust. We demonstrated that the cathodes of some of these detectors could be coated by CsI or SbCs layers to enhance the detection efficiency for the UV and visible photons. We also discovered that such detectors can operate stably in the cascade mode and high overall gains ( 106~10^{6}) are reachable. Applications in several areas, for example in RICH or in noble liquid TPCs are therefore possible. The first results from the detection of UV photons at room and cryogenic temperatures will be given

    Inferring mode inertias in evolved solar-like stars

    Full text link
    Asteroseismology of evolved solar-like stars is experiencing a growing interest due to the wealth of observational data from space-borne instruments such as the \emph{CoRoT} and \emph{Kepler} spacecraft. In particular, the recent detection of mixed modes, which probe both the innermost and uppermost layers of stars, paves the way for inferring the internal structure of stars along their evolution through the subgiant and red giant phases. Mixed modes can also place stringent constraints on the physics of such stars and on their global properties (mass, age, etc...). Here, using two \emph{Kepler} stars (KIC 4351319 and KIC 6442183), we demonstrate that measurements of mixed mode characteristics allow us to estimate the mode inertias, providing a new and additional diagnostics on the mode trapping and subsequently on the internal structure of evolved stars. We however stress that the accuracy may be sensitive to non-adiabatic effects.Comment: ApJ Lette

    Star Formation in the Starburst Cluster in NGC 3603

    Full text link
    We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its intermediate mass (~ 1 - 3 M_sun) stellar population. We show that after correction for differential extinction and actively accreting stars, and the study of field star contamination, strong evidence remains for a continuous spread in the ages of pre-main sequence stars in the range ~ 2 to ~ 30 Myr within the temporal resolution available. Existing differences among presently available theoretical models account for the largest possible variation in shape of the measured age histograms within these limits. We also find that this isochronal age spread in the near infrared and visible Colour-Magnitude Diagrams cannot be reproduced by any other presently known source of astrophysical or instrumental scatter that could mimic the luminosity spread seen in our observations except, possibly, episodic accretion. The measured age spread and the stellar spatial distribution in the cluster are consistent with the hypothesis that star formation started at least 20-30 Myrs ago progressing slowly but continuously up to at least a few million years ago. All the stars in the considered mass range are distributed in a flattened oblate spheroidal pattern with the major axis oriented in an approximate South-East - North-West direction, and with the length of the equatorial axis decreasing with increasing age. This asymmetry is most likely due to the fact that star formation occurred along a filament of gas and dust in the natal molecular cloud oriented locally in this direction.Comment: 21 pages, 19 figures, accepted for publication in Astrophysics & Space Scienc
    • 

    corecore